




Data Structures and Abstractions 
with JavaTM

Fourth Edition

Frank M. Carrano
University of Rhode Island

Timothy M. Henry
New England Institute of Technology

Boston  Columbus  Indianpolis  New York  San Francisco  Upper Saddle River  
Amsterdam  Cape Town  Dubai  London  Madrid  Milan  Munich  Paris  Montréal  Toronto  

Delhi  Mexico City  São Paulo  Sydney  Hong Kong  Seoul  Singapore  Taipei  Tokyo



Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Kelsey Loanes
Director of Marketing: Christy Lesko
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant 
Director of Program Management: Erin Gregg
Program Management-Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Manager: Robert Engelhardt 

Procurement Specialist: Maura Zaldivar-Garcia 
Senior Art Director: Kathryn Foot
Cover Designer: Black Horse Designs
Cover Art: © Vector Illustration/Shutterstock
Permissions Supervisor: Rachel Youdelman
Permissions Administrator: William Opaluch
Web Development, Senior Manager:  

Steve Wright
Associate Web Developer: Barry Offringa
Full-Service Project Management:  

GEX Publishing Services

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook 
appear on the appropriate page within text.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their 
respective owners.

Copyright © 2015, 2012 and 2007 Pearson Education, Inc., All rights reserved. Printed in the United States 
of America. This publication is protected by Copyright, and permission should be obtained from the publisher 
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, 
electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this 
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, 
Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as  
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark  
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Carrano, Frank M.
  Data structures and abstractions with Java / Frank M. Carrano, University of Rhode Island. — Fourth edition.
       pages cm
  Includes bibliographical references and index.
  ISBN 978-0-13-374405-7 (alk. paper)
1.  Data structures (Computer science) 2.  Java (Computer program language)  I. Title.
  QA76.9.D33C37 2015
  005.13'3--dc23
                                                            2014025945

10  9  8  7  6  5  4  3  2  1

ISBN 10: 0-13-374405-1
ISBN 13: 978-0-13-374405-7www.pearsonhighered.com

www.pearsonhighered.com


iii

W
el

co
m

eWelcome to the fourth edition of Data Structures and Abstractions with Java, a book for an introductory 
course in data structures, typically known as CS-2.

I wrote this book with you in mind—whether you are an instructor or a student—based upon my 
experiences during more than three decades of teaching undergraduate computer science. I wanted my book 
to be reader friendly so that students could learn more easily and instructors could teach more effectively. 
To this end, you will find the material covered in small pieces—I call them “segments”—that are easy to 
digest and facilitate learning. Numerous examples that mimic real-world situations provide a context for 
the new material and help to make it easier for students to learn and retain abstract concepts. Many simple 
figures illustrate and clarify complicated ideas. Included are over 60 video tutorials to supplement the 
instruction and help students when their instructor is unavailable.

I am pleased and excited to welcome my co-author and colleague, Dr. Timothy Henry, to this edition. 
Together we have given a fresh update to this work, while retaining the topics and order of the previous edi-
tion. You will find a greater emphasis on our design decisions for both specifications and implementations 
of the various data structures, as well as a new introduction to safe and secure programming practices. The 
new features in this edition are given on the next page.

We hope that you enjoy reading this book. Like many others before you, you can learn—or teach—
data structures in an effective and sustainable way.

Warm regards,
Frank M. Carrano

We are always available to connect with instructors and students who use our books. Your comments, sug-
gestions, and corrections will be greatly appreciated. Here are a few ways to reach us:

E-mail:	 carrano@acm.org or thenry@neit.edu

Facebook:	 www.facebook.com/makingitreal

Twitter:	 twitter.com/Frank_M_Carrano

Website:	 frank-m-carrano.com/makingitreal

www.facebook.com/makingitreal
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Organization and Structure

This book’s organization, sequencing, and pace of topic coverage make learning and teaching easier by 
focusing your attention on one concept at a time, by providing flexibility in the order in which you can cover 
topics, and by clearly distinguishing between the specification and implementation of abstract data types, or 
ADTs. To accomplish these goals, we have organized the material into 29 chapters, composed of small, num-
bered segments that deal with one concept at a time. Each chapter focuses on either the specification and use 
of an ADT or its various implementations. You can choose to cover the specification of an ADT followed by 
its implementations, or you can treat the specification and use of several ADTs before you consider any im-
plementation issues. The book’s organization makes it easy for you to choose the topic order that you prefer.

Table of Contents at a Glance

The following brief table of contents shows the overall composition of the book. Notice the new Prelude 
and nine Java Interludes. Further details—including a chapter-by-chapter description—are given later in this 
preface. Note that some of the appendixes and the glossary are available online.
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Introduction	 Organizing Data
Prelude	 Designing Classes
Chapter 1	 Bags
Java Interlude 1	 Generics
Chapter 2	 Bag Implementations  

That Use Arrays
Java Interlude 2	 Exceptions
Chapter 3	 A Bag Implementation  

That Links Data
Chapter 4	 The Efficiency of  

Algorithms
Chapter 5	 Stacks
Chapter 6	 Stack Implementations
Chapter 7	 Recursion
Java Interlude 3	 More About Generics
Chapter 8	 An Introduction to Sorting
Chapter 9	 Faster Sorting Methods
Java Interlude 4	 More About Exceptions
Chapter 10	 Queues, Deques, and  

Priority Queues
Chapter 11	 Queue, Deque, and Priority 

Queue Implementations
Chapter 12	 Lists
Chapter 13	 A List Implementation That 

Uses an Array
Chapter 14	 A List Implementation That 

Links Data
Java Interlude 5	 Iterators
Chapter 15	 Iterators for the ADT List

Java Interlude 6	� Mutable and Immutable Objects
Chapter 16	 Sorted Lists
Java Interlude 7	 Inheritance
Chapter 17	 Inheritance and Lists
Chapter 18	 Searching
Java Interlude 8	 Generics Once Again
Chapter 19	 Dictionaries
Chapter 20	 Dictionary Implementations
Chapter 21	 Introducing Hashing
Chapter 22	 Hashing as a Dictionary  

Implementation
Chapter 23	 Trees
Chapter 24	 Tree Implementations
Java Interlude 9	 Cloning
Chapter 25	 A Binary Search Tree  

Implementation
Chapter 26	 A Heap Implementation
Chapter 27	 Balanced Search Trees
Chapter 28	 Graphs
Chapter 29	 Graph Implementations
Appendix A	 Documentation and  

Programming Style
Appendix B	 Java Basics (online)
Appendix C	 Java Classes (online)
Appendix D	 Creating Classes from Other  

Classes
Appendix E	 File Input and Output (online)
Glossary	 (online)
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What’s New?

While the chapters are in the same order and cover the same topics as in the previous edition, reader 
feedback convinced us to move some material from the appendixes or online into the main portion of the 
book. Other changes are motivated by reader suggestions and our own desire to improve the presentation. 
Here are the significant changes in this edition:

●● A new Prelude follows the Introduction and precedes Chapter 1 to discuss how to design classes. This 
material was in Appendix D of the previous edition.

●● Relevant aspects of Java have been extracted from either the appendixes or the chapters themselves 
and placed into new Java Interludes that occur throughout the book and as needed. By doing so, we 
increase the distinction and separation between concepts and Java-specific issues. The titles of these 
interludes follow, and you can see their placement between chapters on the previous page:

Java Interlude 1  Generics
Java Interlude 2  Exceptions
Java Interlude 3  More About Generics
Java Interlude 4  More About Exceptions
Java Interlude 5  Iterators
Java Interlude 6  Mutable and Immutable Objects
Java Interlude 7  Inheritance
Java Interlude 8  Generics Once Again
Java Interlude 9  Cloning

●● Safe and secure programming is a new topic that is introduced in Chapter 2, discussed in new Security 
Notes, and reflected in the Java code that implements the ADTs.

●● Beginning with stacks in Chapter 5, most ADT methods now indicate failure by throwing an excep-
tion. Methods only return null when it cannot be a data value within a collection.

●● Expanded coverage of generics treats generic methods and bounded types.
●● Immutable, mutable, and cloneable objects are covered in Java Interludes instead of the online 

Chapter 30 of the previous edition.
●● Additional Design Decisions continue to present the options one has when specifying and imple-

menting particular ADTs and provide the rationale behind our choices.
●● Illustrations have been revised to show objects specifically instead of as values within nodes or array 

elements.
●● Vector-based implementations of the ADT list and queue are no longer covered, but are left as 

programming projects.
●● Line numbers appear in program listings.
●● Java code is Java 8 compliant.
●● Supplements now include a test bank.

Here are the significant changes to specific chapters:

●● Chapter 1 introduces the ADT set in addition to the bag.
●● Chapter 2 introduces safe and secure programming. The code changes suggested here are integrated 

into all ADT implementations in subsequent chapters.
●● Chapters 5 and 6 use exceptions in the specification and implementations of the ADT stack.
●● Chapters 8 and 9 replace some Java code for sorting methods with pseudocode.
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and priority queue.
●● Chapter 11 no longer covers the vector-based implementation of the ADT queue; it is left as a program-

ming project.
●● Chapters 12, 13, and 14 use exceptions in the specification and implementations of the ADT list.
●● Chapter 13 changes the array-based implementation of the ADT list by ignoring the array element at 

index 0. The vector-based implementation of the ADT list is no longer covered, but is left as a program-
ming project.

●● Chapter 15 covers only iterators for the ADT list. The concepts of an iterator in Java are treated in the 
preceding Java Interlude 5 instead of in this chapter.

●● Chapter 20 no longer covers the vector-based implementation of the ADT dictionary; it is left as a 
programming project.

●● Chapter 23 defines balanced binary trees, which previously was in Chapter 25.
●● Chapter 24 no longer defines an interface for a binary node, and the class BinaryNode no longer 

implements one.
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The topics that we cover in this book deal with the various ways of organizing data so that a given  
application can access and manipulate data in an efficient way. These topics are fundamental to your future 
study of computer science, as they provide you with the foundation of knowledge required to create com-
plex and reliable software. Whether you are interested in designing video games or software for robotic 
controlled surgery, the study of data structures is vital to your success. Even if you do not study all of the 
topics in this book now, you are likely to encounter them later. We hope that you will enjoy reading the 
book, and that it will serve as a useful reference tool for your future courses.

After looking over this preface, you should read the Introduction. There you will quickly see what this 
book is about and what you need to know about Java before you begin. The Prelude discusses class design 
and the use of Java interfaces. We use interfaces throughout the book. Appendixes A through E review 
javadoc comments, Java basics, classes, inheritance, and files. New Java Interludes occur throughout the 
book and cover advanced aspects of Java as they are needed. Note that inside the front and back covers 
you will find Java’s reserved words, its primitive data types, the precedence of its operators, and a list of 
Unicode characters.

Please be sure to browse the rest of this preface to see the features that will help you in your studies.
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Each chapter begins with a table of contents, a list of prerequisite portions of the book that you should 
have read, and the learning objectives for the material to be covered. Other pedagogical elements appear 
throughout the book, as follows:

Notes  Important ideas are presented or summarized in highlighted paragraphs and are meant 
to be read in line with the surrounding text.

VideoNote

Security Notes  Aspects of safe and secure programming are introduced and highlighted in 
this new feature.

VideoNote

A Problem Solved  Large examples are presented in the form of “A Problem Solved,” in which 
a problem is posed and its solution is discussed, designed, and implemented.

VideoNote

Design Decisions  To give readers insight into the design choices that one could make when 
formulating a solution, “Design Decision” elements lay out such options, along with the  
rationale behind the choice made for a particular example. These discussions are often in the 
context of one of the “A Problem Solved” examples.

Examples  Numerous examples illuminate new concepts.

VideoNote

Programming Tips  Suggestions to improve or facilitate programming are presented as soon 
as they become relevant.

VideoNote

Self-Test Questions  Questions are posed throughout each chapter, integrated within the text, 
that reinforce the concept just presented. These “self-test” questions help readers to understand 
the material, since answering them requires pause and reflection. Solutions to these questions 
are provided at the end of each chapter.

VideoNote

VideoNotes  Online tutorials are a Pearson feature that provides visual and audio support to 
the  presentation given throughout the book. They offer students another way to recap and 
reinforce key concepts. VideoNotes allow for self-paced instruction with easy navigation,  
including the ability to select, play, rewind, fast-forward, and stop within each video. Unique 
VideoNote icons appear throughout this book whenever a video is available for a particular 
concept or problem. A detailed list of the VideoNotes for this text and their associated loca-
tions in the book can be found on page xxvi. VideoNotes are free with the purchase of a new 
textbook. To purchase access to VideoNotes, please go to 

pearsonhighered.com/carrano

Exercises and Programming Projects  Further practice is available by solving the exercises 
and programming projects at the end of each chapter. Unfortunately, we cannot give readers the  
answers to these exercises and programming projects, even if they are not enrolled in a class. 
Only instructors who adopt the book can receive selected answers from the publisher. For help 
with these exercises and projects, you will have to contact your instructor.
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The following items are available on the publisher’s website at pearsonhighered.com/carrano:

●● Java code as it appears in the book
●● A link to any misprints that have been discovered since the book was published
●● Links to additional online content, which is described next

Instructor Resources

The following protected material is available to instructors who adopt this book by logging onto Pearson’s 
Instructor Resource Center, accessible from pearsonhighered.com/carrano:

●● PowerPoint lecture slides
●● Solutions to exercises and projects
●● Test bank
●● Instructor source code
●● Figures from the book

Additionally, instructors can access the book’s Companion Website for the following online premium  
content, also accessible from pearsonhighered.com/carrano:

●● Instructional VideoNotes
●● Appendixes B, C, and E
●● A glossary of terms

Please contact your Pearson sales representative for an instructor access code. Contact information is avail-
able at pearsonhighered.com/replocator.

Student Resources

The following material is available to students by logging onto the Companion Website accessible from 
pearsonhighered.com/carrano:

●● Instructional VideoNotes
●● Appendixes B, C, and E
●● A glossary of terms

Students must use the access card located in the front of the book to register for and then enter the Com-
panion Website. Students without an access code can purchase access from the Companion Website by 
following the instructions listed there.

Note that the Java Class Library is available at docs.oracle.com/javase/8/docs/api/.
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Readers of this book should have completed a programming course, preferably in Java. The appendixes 
cover the essentials of Java that we assume readers will know. You can use these appendixes as a review or 
as the basis for making the transition to Java from another programming language. The book itself begins 
with the Introduction, which sets the stage for the data organizations that we will study.

●● Prelude: At the request of readers of the previous edition, we have moved the introduction to class 
design from the appendix to the beginning of the book. Most of the material that was in Appendix D of 
the third edition is now in the Prelude, which follows the Introduction.

●● Chapters 1 through 3: We introduce the bag as an abstract data type (ADT). By dividing the mate-
rial across several chapters, we clearly separate the specification, use, and implementation of the bag. 
For example, Chapter 1 specifies the bag and provides several examples of its use. This chapter also 
introduces the ADT set. Chapter 2 covers implementations that use arrays, while Chapter 3 introduces 
chains of linked nodes and uses one in the definition of a class of bags.

In a similar fashion, we separate specification from implementation throughout the book when 
we discuss various other ADTs. You can choose to cover the chapters that specify and use the ADTs 
and then later cover the chapters that implement them. Or you can cover the chapters as they appear, 
implementing each ADT right after studying its specification and use. A list of chapter prerequisites 
appears later in this preface to help you plan your path through the book.

Chapter 2 does more than simply implement the ADT bag. It shows how to approach the imple-
mentation of a class by initially focusing on core methods. When defining a class, it is often useful 
to implement and test these core methods first and to leave definitions of the other methods for later. 
Chapter 2 also introduces the concept of safe and secure programming, and shows how to add this 
protection to your code.

●● Java Interludes 1 and 2: The first Java interlude introduces generics, so that we can use it with our 
first ADT, the bag. This interlude immediately follows Chapter 1. Java Interlude 2 introduces excep-
tions and follows Chapter 2. We apply this material, which was formerly in an appendix, to the imple-
mentations of the ADT bag.

●● Chapter 4: Here we introduce the complexity of algorithms, a topic that we integrate into future 
chapters.

●● Chapters 5 and 6: Chapter 5 discusses stacks, giving examples of their use, and Chapter 6 implements 
the stack using an array, a vector, and a chain.

●● Chapter 7: Next, we present recursion as a problem-solving tool and its relationship to stacks. 
Recursion, along with algorithm efficiency, is a topic that is revisited throughout the book.

●● Java Interlude 3: This interlude provides the Java concepts needed for the sorting methods that we 
are about to present. It introduces the standard interface Comparable, generic methods, bounded type 
parameters, and wildcards.

●● Chapters 8 and 9: The next two chapters discuss various sorting techniques and their relative com-
plexities. We consider both iterative and recursive versions of these algorithms.

●● Java Interlude 4: This Java interlude shows how the programmer can write new exception classes. In 
doing so, it shows how to extend an existing class of exceptions. It also introduces the finally block.

●● Chapters 10 and 11: Chapter 10 discusses queues, deques, and priority queues, and Chapter 11 con-
siders their implementations. It is in this latter chapter that we introduce circularly linked and doubly 
linked chains. Chapter 11 also uses the programmer-defined class EmptyQueueException.

●● Chapters 12, 13, and 14: The next three chapters introduce the ADT list. We discuss this collection 
abstractly and then implement it by using an array and a chain of linked nodes.

●● Java Interlude 5 and Chapter 15: The coverage of Java iterators that was formerly in Chapter 15 
now appears before the chapter in Java Interlude 5. Included are the standard interfaces Iterator, 
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It considers and implements Java’s iterator interfaces Iterator and ListIterator.
●● Java Interlude 6: This interlude discusses mutable and immutable objects, material that previously 

was in the online Chapter 30.
●● Chapters 16 and 17 and Java Interlude 7: Continuing the discussion of a list, Chapter 16 intro-

duces the sorted list, looking at two possible implementations and their efficiencies. Chapter 17 shows 
how to use the list as a superclass for the sorted list and discusses the general design of a superclass. 
Although inheritance is reviewed in Appendix D, the relevant particulars of inheritance—including 
protected access, abstract classes, and abstract methods—are presented in Java Interlude 7 just before 
Chapter 17.

●● Chapter 18: We then examine some strategies for searching an array or a chain in the context of a list 
or a sorted list. This discussion is a good basis for the sequence of chapters that follows.

●● Java Interlude 8: Before we get to the next chapter, we quickly cover in this interlude situations 
where more than one generic data type is necessary.

●● Chapters 19 through 22: Chapter 19 covers the specification and use of the ADT dictionary. 
Chapter 20 presents implementations of the dictionary that are linked or that use arrays. Chapter 21 
introduces hashing, and Chapter 22 uses hashing as a dictionary implementation.

●● Chapters 23 and 24 and Java Interlude 9: Chapter 23 discusses trees and their possible uses. 
Included among the several examples of trees is an introduction to the binary search tree and the heap. 
Chapter 24 considers implementations of the binary tree and the general tree. Java Interlude 9 dis-
cusses cloning, a topic that was previously online. We clone an array, a chain of linked nodes, and a 
binary node. We also investigate a sorted list of clones. Although this material is important, you can 
treat it as optional, as it is not required in the following chapters.

●● Chapters 25 through 27: Chapter 25 focuses on the implementation of the binary search tree. 
Chapter 26 shows how to use an array to implement the heap. Chapter 27 introduces balanced search 
trees. Included in this chapter are the AVL, 2-3, 2-4, and red-black trees, as well as B-trees.

●● Chapters 28 and 29: Finally, we discuss graphs and look at several applications and two 
implementations.

●● Appendixes A through E: The appendixes provide supplemental coverage of Java. As we mentioned 
earlier. Appendix A considers programming style and comments. It introduces javadoc comments 
and defines the tags that we use in this book. Appendix B reviews Java up to but not including classes. 
However, this appendix also covers the Scanner class, enumerations, boxing and unboxing, and 
the for-each loop. Appendix C discusses Java classes, Appendix D expands this topic by looking at  
composition and inheritance, and Appendix E discusses files.
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Look around and you will see ways that people organize things. When you stopped at the 
store this morning, you went to the back of a line to wait for the cashier. The line organized 
people chronologically. The first person in the line was the first to be served and to leave the 
line. Eventually, you reached the front of the line and left the store with a bag containing your 
purchases. The items in the bag were in no particular order, and some of them were the same.

Do you see a stack of books or a pile of papers on your desk? It’s easy to look at or 
remove the top item of the stack or to add a new item to the top of the stack. The items in a 
stack also are organized chronologically, with the item added most recently on top and the 
item added first on the bottom.

At your desk, you see your to-do list. Each entry in the list has a position that might or 
might not be important to you. You may have written them either as you thought of them, in 
their order of importance, or in alphabetical order. You decide the order; the list simply pro-
vides places for your entries.

Your dictionary is an alphabetical list of words and their definitions. You search for a 
word and get its definition. If your dictionary is printed, the alphabetical organization helps 
you to locate a word quickly. If your dictionary is computerized, its alphabetical organization 
is hidden, but it still speeds the search.

Speaking of your computer, you have organized your files into folders, or directories. 
Each folder contains several other folders or files. This type of organization is hierarchical. If 
you drew a picture of it, you would get something like a family tree or a chart of a company’s 
internal departments. These data organizations are similar and are called trees.

Finally, notice the road map that you are using to plan your weekend trip. The diagram 
of roads and towns shows you how to get from one place to another. Often, several ways 
are possible. One way might be shorter, another faster. The map has an organization known  
as a graph.

Organizing Data

Introduction



2   INTRODUCTiON   Organizing Data

Computer programs also need to organize their data. They do so in ways that parallel the 
examples we just cited. That is, programs can use a stack, a list, a dictionary, and so on. These 
ways of organizing data are represented by abstract data types. An abstract data type, or ADT, 
is a specification that describes a data set and the operations on that data. Each ADT specifies 
what data is stored and what the operations on the data do. Since an ADT does not indicate how 
to store the data or how to implement the operations, we can talk about ADTs independently of 
any programming language. In contrast, a data structure is an implementation of an ADT within 
a programming language.

A collection is a general term for an ADT that contains a group of objects. Some collections 
allow duplicate items, some do not. Some collections arrange their contents in a certain order, 
while others do not.

We might create an ADT bag consisting of an unordered collection that allows duplicates. It 
is like a grocery bag, a lunch bag, or a bag of potato chips. Suppose you remove one chip from a 
bag of chips. You don’t know when the chip was placed into the bag. You don’t know whether the 
bag contains another chip shaped exactly like the one you just removed. But you don’t really care. 
If you did, you wouldn’t store your chips in a bag!

A bag does not order its contents, but sometimes you do want to order things. ADTs can order 
their items in a variety of ways. The ADT list, for example, simply numbers its items. A list, then, 
has a first item, a second item, and so on. Although you can add an item to the end of a list, you can 
also insert an item at the beginning of the list or between existing items. Doing so renumbers the 
items after the new item. Additionally, you can remove an item at a particular position within a list. 
Thus, the position of an item in the list does not necessarily indicate when it was added. Notice that 
the list does not decide where an item is placed; you make this decision.

Examples of everday 
data organizations
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In contrast, the ADTs stack and queue order their items chronologically. When you remove 
an item from a stack, you remove the one that was added most recently. When you remove an item 
from a queue, you remove the one that was added the earliest. Thus, a stack is like a pile of books. 
You can remove the top book or add another book to the top of the pile. A queue is like a line of 
people. People leave a line from its front and join it at its end.

Some ADTs maintain their entries in sorted order, if the items can be compared. For instance, 
strings can be organized in alphabetical order. When you add an item to the ADT sorted list, for 
example, the ADT determines where to place the item in the list. You do not indicate a position for 
the item, as you would with the ADT list.

The ADT dictionary contains pairs of items, much as a language dictionary contains a word 
and its definition. In this example, the word serves as a key that is used to locate the entries. Some 
dictionaries sort their entries and some do not.

The ADT tree organizes its entries according to some hierarchy. For example, in a family tree, 
people are associated with their children and their parents. The ADT binary search tree has a 
combined hierarchical and sorted organization that makes locating a particular entry easier.

The ADT graph is a generalization of the ADT tree that focuses on the relationship among its 
entries instead of any hierarchical organization. For example, a road map is a graph that shows the 
existing roads and distances between towns.

This book shows you how to use and implement these data organizations. Throughout the 
book, we’ve assumed that you already know Java. If you need a refresher, you will find the 
appendixes helpful. Appendix A gives an overview of writing comments suitable for javadoc. 
Appendix B reviews the basic statements in Java. Appendix C discusses the fundamental construc-
tion of classes and methods, and Appendix D covers the essentials of composition and inheritance. 
Finally, Appendix E presents reading and writing external files. Appendixes B, C, and E are on the 
book’s website (see page ix of the Preface). You can download them and refer to the material as 
needed. Special sections throughout the book, called Java Interludes, focus on relevant aspects of 
Java that might be new to you, including how to handle exceptions. The Prelude, which follows, 
discusses how to design classes, specify methods, and write Java interfaces. Using interfaces and 
writing comments to specify methods are essential to our presentation of ADTs.  
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6   PRELUDE   Designing Classes

an implementation during the design of a class. We emphasize the importance both of specifying 
how a method should behave before you implement it and of expressing your specifications as 
comments in your program.

We introduce Java interfaces as a way to separate the declarations of a class’s behavior from 
its implementation. Finally, we present, at an elementary level, some techniques for identifying 
the classes necessary for a particular solution.

Encapsulation
	P.1	 What is the most useful description of an automobile, if you want to learn to drive one? It clearly is 

not a description of how its engine goes through a cycle of taking in air and gasoline, igniting the 
gasoline/air mixture, and expelling exhaust. Such details are unnecessary when you want to learn 
to drive. In fact, such details can get in your way. If you want to learn to drive an automobile, the 
most useful description of an automobile has such features as the following:

●● If you press your foot on the accelerator pedal, the automobile will move faster.
●● If you press your foot on the brake pedal, the automobile will slow down and eventually stop.
●● If you turn the steering wheel to the right, the automobile will turn to the right.
●● If you turn the steering wheel to the left, the automobile will turn to the left.

Just as you need not tell somebody who wants to drive a car how the engine works, you 
need not tell somebody who uses a piece of software all the fine details of its Java implementa-
tion. Likewise, suppose that you create a software component for another programmer to use in a  
program. You should describe the component in a way that tells the other programmer how to use 
it but that spares the programmer all the details of how you wrote the software.

	P.2	 Encapsulation is one of the design principles of object-oriented programming. The word “encap
sulation” sounds as though it means putting things into a capsule, and that image is indeed 
correct. Encapsulation hides the fine detail of what is inside the “capsule.” For this reason, 
encapsulation is often called information hiding. But not everything should be hidden. In 
an automobile, certain things are visible—like the pedals and steering wheel—and others are 
hidden under the hood. In other words, the automobile is encapsulated so that the details are 
hidden, and only the controls needed to drive the automobile are visible, as Figure P-1 shows. 
Similarly, you should encapsulate your Java code so that details are hidden and only the neces-
sary controls are visible.

Encapsulation encloses data and methods within a class and hides the implementation details 
that are not necessary for using the class. If a class is well designed, its use does not require an 
understanding of its implementation. A programmer can use the class’s methods without know-
ing the details of how they are coded. The programmer must know only how to provide a method 
with appropriate arguments, leaving the method to perform the right action. Stated simply, the 
programmer need not worry about the internal details of the class definition. The programmer 
who uses encapsulated software to write more software has a simpler task. As a result, software is 
produced more quickly and with fewer errors.

 
�Note:  Encapsulation is a design principle of object-oriented programming that encloses data 
and methods within a class, thereby hiding the details of a class’s implementation. A program-
mer receives only enough information to be able to use the class. A well-designed class can be 
used as though the body of every method was hidden from view.
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	P.3	 Abstraction is a process that asks you to focus on what instead of how. When you design a class, you 
practice data abstraction. You focus on what you want to do with or to the data without worry-
ing about how you will accomplish these tasks and how you will represent the data. Abstraction 
asks you to focus on what data and operations are important. When you abstract something, you 
identify the central ideas. For example, an abstract of a book is a brief description of the book, as 
opposed to the entire book.

When designing a class, you should not think about any method’s implementation. That is, 
you should not worry about how the class’s methods will accomplish their goals. This separation of 
specification from implementation allows you to concentrate on fewer details, thereby making your 
task easier and less error-prone. Detailed, well-planned specifications facilitate an implementation 
that is more likely to be successful.

 
Note:  The process of abstraction asks you to focus on what instead of how.

FIGURE P-1	 �An automobile’s controls are visible to the driver, but its inner 
workings are hidden

	P.4	 When done correctly, encapsulation divides a class definition into two parts, which we will call the 
client interface and the implementation. The client interface describes everything a programmer 
needs to know to use the class. It consists of the headers for the public methods of the class, the 
comments that tell a programmer how to use these public methods, and any publicly defined con-
stants of the class. The client interface part of the class definition should be all you need to know 
to use the class in your program.

The implementation consists of all data fields and the definitions of all methods, including those 
that are public, private, and protected. Although you need the implementation to run a client (a program 
that uses the class), you should not need to know anything about the implementation to write the client. 
Figure P-2 illustrates an encapsulated implementation of a class and the client interface. Although the 
implementation is hidden from the client, the interface is visible and provides a well-regulated means 
for the client to communicate with the implementation.
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FIGURE P-2	 �An interface provides well-regulated communication between 
a hidden implementation and a client

The client interface and implementation are not separated in the definition of a Java class. 
They are mixed together. You can, however, create a separate Java interface as a companion to 
your class. A later section of this prelude describes how to write such an interface, and we will 
write several of them in this book.

Question 1 How does a client interface differ from a class implementation?

Question 2 Think of an example, other than an automobile, that illustrates encapsulation.  
What part of your example corresponds to a client interface and what part to an implementation?

Specifying Methods
Separating the purpose of a class and its methods from their implementations is vital to a  
successful software project. You should specify what each class and method does without concern 
for its implementation. Writing descriptions enables you to capture your ideas initially and to 
develop them so that they are clear enough to implement. Your written descriptions should reach 
the point where they are useful as comments in your program. You need to go beyond a view that 
sees comments as something you add after you write the program to satisfy an instructor or boss.

	Comments
Let’s focus on comments that you write for a class’s methods. Although organizations tend to have 
their own style for comments, the developers of Java have specified a commenting style that you 
should follow. If you include comments written in this style in your program, you can run a util-
ity program called javadoc to produce documents that describe your classes. This documentation 
tells people what they need to know to use your class but omits all the implementation details, 
including the bodies of all method definitions.

The program javadoc extracts the header for your class, the headers for all public methods, 
and comments that are written in a certain form. Each such comment must appear immediately 
before a public class definition or the header of a public method and must begin with /** and end 
with */. Certain tags that begin with the symbol @ appear within the comments to identify various 
aspects of the method. For example, you use @param to identify a parameter, @return to identify 
a return value, and @throws to indicate an exception that the method throws. You will see some 
examples of these tags within the comments in this prelude. Appendix A provides the details for 
writing comments acceptable to javadoc.
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Rather than talk further about the rules for javadoc here, we want to discuss some important 
aspects of specifying a method. First, you need to write a concise statement of the method’s pur-
pose or task. Beginning this statement with a verb will help you to avoid many extra words that 
you really do not need.

In thinking about a method’s purpose, you should consider its input parameters, if any, and 
describe them. You also need to describe the method’s results. Does it return a value, does it cause 
some action, or does it affect the state of an argument? In writing such descriptions, you should 
keep in mind the following ideas.

	Preconditions and Postconditions
	P.5	 A precondition is a statement of the conditions that must be true before a method begins execution. 

The method should not be used, and cannot be expected to perform correctly, unless the precondi-
tion is satisfied. A precondition can be related to the description of a method’s parameters. For 
example, a method that computes the square root of x can have x ≥ 0 as a precondition.

A postcondition is a statement of what is true after a method completes its execution, assum-
ing that the precondition was met. For a valued method, the postcondition will describe the value 
returned by the method. For a void method, the postcondition will describe actions taken and any 
changes to the calling object. In general, the postcondition describes all the effects produced by a 
method invocation.

Thinking in terms of a postcondition can help you to clarify a method’s purpose. Notice that 
going from precondition to postcondition leaves out the how—that is, we separate the method’s 
specification from its implementation.

 
�Programming Tip:  A method that cannot satisfy its postcondition, even though its 
precondition is met, can throw an exception. (See Java Interludes 2 and 4 for a discussion of 
exceptions.)

	P.6	 Responsibility. A precondition implies responsibility for guaranteeing that certain conditions are 
met. If the client is responsible for meeting the conditions before calling the method, the method 
need not check the conditions. On the other hand, if the method is responsible for enforcing the 
conditions, the client does not check them. A clear statement of who must check a given set of 
conditions increases the probability that someone will do so and avoids duplication of effort.

For example, you could specify the square root method that we mentioned in the previous 
segment by writing the following comments before its header:

/** Computes the square root of a number.
    @param x  A real number >= 0.
    @return  The square root of x.
*/

In this case, the method assumes that the client will provide a nonnegative number as an argument.
A safer technique is to make the method assume responsibility for checking the argument. In 

that case, its comments could read as follows:
/** Computes the square root of a number.
    @param x  A real number.
    @return  The square root of x if x >= 0.
    @throws  ArithmeticException if x < 0.
*/

Although we’ve integrated the precondition and postcondition into the previous comments, we 
could instead identify them separately.




