

Data Structures and Abstractions
with JavaTM

Fourth Edition

Frank M. Carrano
University of Rhode Island

Timothy M. Henry
New England Institute of Technology

Boston  Columbus  Indianpolis  New York  San Francisco  Upper Saddle River
Amsterdam  Cape Town  Dubai  London  Madrid  Milan  Munich  Paris  Montréal  Toronto

Delhi  Mexico City  São Paulo  Sydney  Hong Kong  Seoul  Singapore  Taipei  Tokyo

Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Kelsey Loanes
Director of Marketing: Christy Lesko
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Program Management: Erin Gregg
Program Management-Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Manager: Robert Engelhardt

Procurement Specialist: Maura Zaldivar-Garcia
Senior Art Director: Kathryn Foot
Cover Designer: Black Horse Designs
Cover Art: © Vector Illustration/Shutterstock
Permissions Supervisor: Rachel Youdelman
Permissions Administrator: William Opaluch
Web Development, Senior Manager:

Steve Wright
Associate Web Developer: Barry Offringa
Full-Service Project Management:

GEX Publishing Services

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Copyright © 2015, 2012 and 2007 Pearson Education, Inc., All rights reserved. Printed in the United States
of America. This publication is protected by Copyright, and permission should be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Carrano, Frank M.
 Data structures and abstractions with Java / Frank M. Carrano, University of Rhode Island. — Fourth edition.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-0-13-374405-7 (alk. paper)
1. Data structures (Computer science) 2. Java (Computer program language) I. Title.
 QA76.9.D33C37 2015
 005.13'3--dc23
 2014025945

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-374405-1
ISBN 13: 978-0-13-374405-7www.pearsonhighered.com

www.pearsonhighered.com

iii

W
el

co
m

eWelcome to the fourth edition of Data Structures and Abstractions with Java, a book for an introductory
course in data structures, typically known as CS-2.

I wrote this book with you in mind—whether you are an instructor or a student—based upon my
experiences during more than three decades of teaching undergraduate computer science. I wanted my book
to be reader friendly so that students could learn more easily and instructors could teach more effectively.
To this end, you will find the material covered in small pieces—I call them “segments”—that are easy to
digest and facilitate learning. Numerous examples that mimic real-world situations provide a context for
the new material and help to make it easier for students to learn and retain abstract concepts. Many simple
figures illustrate and clarify complicated ideas. Included are over 60 video tutorials to supplement the
instruction and help students when their instructor is unavailable.

I am pleased and excited to welcome my co-author and colleague, Dr. Timothy Henry, to this edition.
Together we have given a fresh update to this work, while retaining the topics and order of the previous edi-
tion. You will find a greater emphasis on our design decisions for both specifications and implementations
of the various data structures, as well as a new introduction to safe and secure programming practices. The
new features in this edition are given on the next page.

We hope that you enjoy reading this book. Like many others before you, you can learn—or teach—
data structures in an effective and sustainable way.

Warm regards,
Frank M. Carrano

We are always available to connect with instructors and students who use our books. Your comments, sug-
gestions, and corrections will be greatly appreciated. Here are a few ways to reach us:

E-mail:	 carrano@acm.org or thenry@neit.edu

Facebook:	 www.facebook.com/makingitreal

Twitter:	 twitter.com/Frank_M_Carrano

Website:	 frank-m-carrano.com/makingitreal

www.facebook.com/makingitreal

iv

Organization and Structure

This book’s organization, sequencing, and pace of topic coverage make learning and teaching easier by
focusing your attention on one concept at a time, by providing flexibility in the order in which you can cover
topics, and by clearly distinguishing between the specification and implementation of abstract data types, or
ADTs. To accomplish these goals, we have organized the material into 29 chapters, composed of small, num-
bered segments that deal with one concept at a time. Each chapter focuses on either the specification and use
of an ADT or its various implementations. You can choose to cover the specification of an ADT followed by
its implementations, or you can treat the specification and use of several ADTs before you consider any im-
plementation issues. The book’s organization makes it easy for you to choose the topic order that you prefer.

Table of Contents at a Glance

The following brief table of contents shows the overall composition of the book. Notice the new Prelude
and nine Java Interludes. Further details—including a chapter-by-chapter description—are given later in this
preface. Note that some of the appendixes and the glossary are available online.

B
ri

ef
 T

ab
le

 o
f

C
o

n
te

n
ts

Introduction	 Organizing Data
Prelude	 Designing Classes
Chapter 1	 Bags
Java Interlude 1	 Generics
Chapter 2	 Bag Implementations

That Use Arrays
Java Interlude 2	 Exceptions
Chapter 3	 A Bag Implementation

That Links Data
Chapter 4	 The Efficiency of

Algorithms
Chapter 5	 Stacks
Chapter 6	 Stack Implementations
Chapter 7	 Recursion
Java Interlude 3	 More About Generics
Chapter 8	 An Introduction to Sorting
Chapter 9	 Faster Sorting Methods
Java Interlude 4	 More About Exceptions
Chapter 10	 Queues, Deques, and

Priority Queues
Chapter 11	 Queue, Deque, and Priority

Queue Implementations
Chapter 12	 Lists
Chapter 13	 A List Implementation That

Uses an Array
Chapter 14	 A List Implementation That

Links Data
Java Interlude 5	 Iterators
Chapter 15	 Iterators for the ADT List

Java Interlude 6	� Mutable and Immutable Objects
Chapter 16	 Sorted Lists
Java Interlude 7	 Inheritance
Chapter 17	 Inheritance and Lists
Chapter 18	 Searching
Java Interlude 8	 Generics Once Again
Chapter 19	 Dictionaries
Chapter 20	 Dictionary Implementations
Chapter 21	 Introducing Hashing
Chapter 22	 Hashing as a Dictionary

Implementation
Chapter 23	 Trees
Chapter 24	 Tree Implementations
Java Interlude 9	 Cloning
Chapter 25	 A Binary Search Tree

Implementation
Chapter 26	 A Heap Implementation
Chapter 27	 Balanced Search Trees
Chapter 28	 Graphs
Chapter 29	 Graph Implementations
Appendix A	 Documentation and

Programming Style
Appendix B	 Java Basics (online)
Appendix C	 Java Classes (online)
Appendix D	 Creating Classes from Other

Classes
Appendix E	 File Input and Output (online)
Glossary	 (online)

v

What’s New?

While the chapters are in the same order and cover the same topics as in the previous edition, reader
feedback convinced us to move some material from the appendixes or online into the main portion of the
book. Other changes are motivated by reader suggestions and our own desire to improve the presentation.
Here are the significant changes in this edition:

●● A new Prelude follows the Introduction and precedes Chapter 1 to discuss how to design classes. This
material was in Appendix D of the previous edition.

●● Relevant aspects of Java have been extracted from either the appendixes or the chapters themselves
and placed into new Java Interludes that occur throughout the book and as needed. By doing so, we
increase the distinction and separation between concepts and Java-specific issues. The titles of these
interludes follow, and you can see their placement between chapters on the previous page:

Java Interlude 1  Generics
Java Interlude 2  Exceptions
Java Interlude 3  More About Generics
Java Interlude 4  More About Exceptions
Java Interlude 5  Iterators
Java Interlude 6  Mutable and Immutable Objects
Java Interlude 7  Inheritance
Java Interlude 8  Generics Once Again
Java Interlude 9  Cloning

●● Safe and secure programming is a new topic that is introduced in Chapter 2, discussed in new Security
Notes, and reflected in the Java code that implements the ADTs.

●● Beginning with stacks in Chapter 5, most ADT methods now indicate failure by throwing an excep-
tion. Methods only return null when it cannot be a data value within a collection.

●● Expanded coverage of generics treats generic methods and bounded types.
●● Immutable, mutable, and cloneable objects are covered in Java Interludes instead of the online

Chapter 30 of the previous edition.
●● Additional Design Decisions continue to present the options one has when specifying and imple-

menting particular ADTs and provide the rationale behind our choices.
●● Illustrations have been revised to show objects specifically instead of as values within nodes or array

elements.
●● Vector-based implementations of the ADT list and queue are no longer covered, but are left as

programming projects.
●● Line numbers appear in program listings.
●● Java code is Java 8 compliant.
●● Supplements now include a test bank.

Here are the significant changes to specific chapters:

●● Chapter 1 introduces the ADT set in addition to the bag.
●● Chapter 2 introduces safe and secure programming. The code changes suggested here are integrated

into all ADT implementations in subsequent chapters.
●● Chapters 5 and 6 use exceptions in the specification and implementations of the ADT stack.
●● Chapters 8 and 9 replace some Java code for sorting methods with pseudocode.

N
ew

 t
o

 t
h

is
 E

d
it

io
n

vi

N
ew

 t
o

 t
h

is
 E

d
it

io
n ●● Chapters 10 and 11 use exceptions in the specification and implementations of the ADTs queue, deque,

and priority queue.
●● Chapter 11 no longer covers the vector-based implementation of the ADT queue; it is left as a program-

ming project.
●● Chapters 12, 13, and 14 use exceptions in the specification and implementations of the ADT list.
●● Chapter 13 changes the array-based implementation of the ADT list by ignoring the array element at

index 0. The vector-based implementation of the ADT list is no longer covered, but is left as a program-
ming project.

●● Chapter 15 covers only iterators for the ADT list. The concepts of an iterator in Java are treated in the
preceding Java Interlude 5 instead of in this chapter.

●● Chapter 20 no longer covers the vector-based implementation of the ADT dictionary; it is left as a
programming project.

●● Chapter 23 defines balanced binary trees, which previously was in Chapter 25.
●● Chapter 24 no longer defines an interface for a binary node, and the class BinaryNode no longer

implements one.

viivii

The topics that we cover in this book deal with the various ways of organizing data so that a given
application can access and manipulate data in an efficient way. These topics are fundamental to your future
study of computer science, as they provide you with the foundation of knowledge required to create com-
plex and reliable software. Whether you are interested in designing video games or software for robotic
controlled surgery, the study of data structures is vital to your success. Even if you do not study all of the
topics in this book now, you are likely to encounter them later. We hope that you will enjoy reading the
book, and that it will serve as a useful reference tool for your future courses.

After looking over this preface, you should read the Introduction. There you will quickly see what this
book is about and what you need to know about Java before you begin. The Prelude discusses class design
and the use of Java interfaces. We use interfaces throughout the book. Appendixes A through E review
javadoc comments, Java basics, classes, inheritance, and files. New Java Interludes occur throughout the
book and cover advanced aspects of Java as they are needed. Note that inside the front and back covers
you will find Java’s reserved words, its primitive data types, the precedence of its operators, and a list of
Unicode characters.

Please be sure to browse the rest of this preface to see the features that will help you in your studies.

A
 N

o
te

 t
o

 S
tu

d
en

ts

viii

P
ed

ag
o

gi
ca

l
El

em
en

ts Features to Enhance Learning

Each chapter begins with a table of contents, a list of prerequisite portions of the book that you should
have read, and the learning objectives for the material to be covered. Other pedagogical elements appear
throughout the book, as follows:

Notes  Important ideas are presented or summarized in highlighted paragraphs and are meant
to be read in line with the surrounding text.

VideoNote

Security Notes  Aspects of safe and secure programming are introduced and highlighted in
this new feature.

VideoNote

A Problem Solved  Large examples are presented in the form of “A Problem Solved,” in which
a problem is posed and its solution is discussed, designed, and implemented.

VideoNote

Design Decisions  To give readers insight into the design choices that one could make when
formulating a solution, “Design Decision” elements lay out such options, along with the
rationale behind the choice made for a particular example. These discussions are often in the
context of one of the “A Problem Solved” examples.

Examples  Numerous examples illuminate new concepts.

VideoNote

Programming Tips  Suggestions to improve or facilitate programming are presented as soon
as they become relevant.

VideoNote

Self-Test Questions  Questions are posed throughout each chapter, integrated within the text,
that reinforce the concept just presented. These “self-test” questions help readers to understand
the material, since answering them requires pause and reflection. Solutions to these questions
are provided at the end of each chapter.

VideoNote

VideoNotes  Online tutorials are a Pearson feature that provides visual and audio support to
the presentation given throughout the book. They offer students another way to recap and
reinforce key concepts. VideoNotes allow for self-paced instruction with easy navigation,
including the ability to select, play, rewind, fast-forward, and stop within each video. Unique
VideoNote icons appear throughout this book whenever a video is available for a particular
concept or problem. A detailed list of the VideoNotes for this text and their associated loca-
tions in the book can be found on page xxvi. VideoNotes are free with the purchase of a new
textbook. To purchase access to VideoNotes, please go to

pearsonhighered.com/carrano

Exercises and Programming Projects  Further practice is available by solving the exercises
and programming projects at the end of each chapter. Unfortunately, we cannot give readers the
answers to these exercises and programming projects, even if they are not enrolled in a class.
Only instructors who adopt the book can receive selected answers from the publisher. For help
with these exercises and projects, you will have to contact your instructor.

ix

R
es

o
u

rc
esAccessing Instructor and Student Resource Materials

The following items are available on the publisher’s website at pearsonhighered.com/carrano:

●● Java code as it appears in the book
●● A link to any misprints that have been discovered since the book was published
●● Links to additional online content, which is described next

Instructor Resources

The following protected material is available to instructors who adopt this book by logging onto Pearson’s
Instructor Resource Center, accessible from pearsonhighered.com/carrano:

●● PowerPoint lecture slides
●● Solutions to exercises and projects
●● Test bank
●● Instructor source code
●● Figures from the book

Additionally, instructors can access the book’s Companion Website for the following online premium
content, also accessible from pearsonhighered.com/carrano:

●● Instructional VideoNotes
●● Appendixes B, C, and E
●● A glossary of terms

Please contact your Pearson sales representative for an instructor access code. Contact information is avail-
able at pearsonhighered.com/replocator.

Student Resources

The following material is available to students by logging onto the Companion Website accessible from
pearsonhighered.com/carrano:

●● Instructional VideoNotes
●● Appendixes B, C, and E
●● A glossary of terms

Students must use the access card located in the front of the book to register for and then enter the Com-
panion Website. Students without an access code can purchase access from the Companion Website by
following the instructions listed there.

Note that the Java Class Library is available at docs.oracle.com/javase/8/docs/api/.

x

D
et

ai
le

d
 C

o
n

te
n

t
D

es
cr

ip
ti

o
n Content Overview

Readers of this book should have completed a programming course, preferably in Java. The appendixes
cover the essentials of Java that we assume readers will know. You can use these appendixes as a review or
as the basis for making the transition to Java from another programming language. The book itself begins
with the Introduction, which sets the stage for the data organizations that we will study.

●● Prelude: At the request of readers of the previous edition, we have moved the introduction to class
design from the appendix to the beginning of the book. Most of the material that was in Appendix D of
the third edition is now in the Prelude, which follows the Introduction.

●● Chapters 1 through 3: We introduce the bag as an abstract data type (ADT). By dividing the mate-
rial across several chapters, we clearly separate the specification, use, and implementation of the bag.
For example, Chapter 1 specifies the bag and provides several examples of its use. This chapter also
introduces the ADT set. Chapter 2 covers implementations that use arrays, while Chapter 3 introduces
chains of linked nodes and uses one in the definition of a class of bags.

In a similar fashion, we separate specification from implementation throughout the book when
we discuss various other ADTs. You can choose to cover the chapters that specify and use the ADTs
and then later cover the chapters that implement them. Or you can cover the chapters as they appear,
implementing each ADT right after studying its specification and use. A list of chapter prerequisites
appears later in this preface to help you plan your path through the book.

Chapter 2 does more than simply implement the ADT bag. It shows how to approach the imple-
mentation of a class by initially focusing on core methods. When defining a class, it is often useful
to implement and test these core methods first and to leave definitions of the other methods for later.
Chapter 2 also introduces the concept of safe and secure programming, and shows how to add this
protection to your code.

●● Java Interludes 1 and 2: The first Java interlude introduces generics, so that we can use it with our
first ADT, the bag. This interlude immediately follows Chapter 1. Java Interlude 2 introduces excep-
tions and follows Chapter 2. We apply this material, which was formerly in an appendix, to the imple-
mentations of the ADT bag.

●● Chapter 4: Here we introduce the complexity of algorithms, a topic that we integrate into future
chapters.

●● Chapters 5 and 6: Chapter 5 discusses stacks, giving examples of their use, and Chapter 6 implements
the stack using an array, a vector, and a chain.

●● Chapter 7: Next, we present recursion as a problem-solving tool and its relationship to stacks.
Recursion, along with algorithm efficiency, is a topic that is revisited throughout the book.

●● Java Interlude 3: This interlude provides the Java concepts needed for the sorting methods that we
are about to present. It introduces the standard interface Comparable, generic methods, bounded type
parameters, and wildcards.

●● Chapters 8 and 9: The next two chapters discuss various sorting techniques and their relative com-
plexities. We consider both iterative and recursive versions of these algorithms.

●● Java Interlude 4: This Java interlude shows how the programmer can write new exception classes. In
doing so, it shows how to extend an existing class of exceptions. It also introduces the finally block.

●● Chapters 10 and 11: Chapter 10 discusses queues, deques, and priority queues, and Chapter 11 con-
siders their implementations. It is in this latter chapter that we introduce circularly linked and doubly
linked chains. Chapter 11 also uses the programmer-defined class EmptyQueueException.

●● Chapters 12, 13, and 14: The next three chapters introduce the ADT list. We discuss this collection
abstractly and then implement it by using an array and a chain of linked nodes.

●● Java Interlude 5 and Chapter 15: The coverage of Java iterators that was formerly in Chapter 15
now appears before the chapter in Java Interlude 5. Included are the standard interfaces Iterator,

xi

D
et

ai
le

d
 C

o
n

te
n

t
D

es
cr

ip
ti

o
nIterable, and ListIterator. Chapter 15 then shows ways to implement an iterator for the ADT list.

It considers and implements Java’s iterator interfaces Iterator and ListIterator.
●● Java Interlude 6: This interlude discusses mutable and immutable objects, material that previously

was in the online Chapter 30.
●● Chapters 16 and 17 and Java Interlude 7: Continuing the discussion of a list, Chapter 16 intro-

duces the sorted list, looking at two possible implementations and their efficiencies. Chapter 17 shows
how to use the list as a superclass for the sorted list and discusses the general design of a superclass.
Although inheritance is reviewed in Appendix D, the relevant particulars of inheritance—including
protected access, abstract classes, and abstract methods—are presented in Java Interlude 7 just before
Chapter 17.

●● Chapter 18: We then examine some strategies for searching an array or a chain in the context of a list
or a sorted list. This discussion is a good basis for the sequence of chapters that follows.

●● Java Interlude 8: Before we get to the next chapter, we quickly cover in this interlude situations
where more than one generic data type is necessary.

●● Chapters 19 through 22: Chapter 19 covers the specification and use of the ADT dictionary.
Chapter 20 presents implementations of the dictionary that are linked or that use arrays. Chapter 21
introduces hashing, and Chapter 22 uses hashing as a dictionary implementation.

●● Chapters 23 and 24 and Java Interlude 9: Chapter 23 discusses trees and their possible uses.
Included among the several examples of trees is an introduction to the binary search tree and the heap.
Chapter 24 considers implementations of the binary tree and the general tree. Java Interlude 9 dis-
cusses cloning, a topic that was previously online. We clone an array, a chain of linked nodes, and a
binary node. We also investigate a sorted list of clones. Although this material is important, you can
treat it as optional, as it is not required in the following chapters.

●● Chapters 25 through 27: Chapter 25 focuses on the implementation of the binary search tree.
Chapter 26 shows how to use an array to implement the heap. Chapter 27 introduces balanced search
trees. Included in this chapter are the AVL, 2-3, 2-4, and red-black trees, as well as B-trees.

●● Chapters 28 and 29: Finally, we discuss graphs and look at several applications and two
implementations.

●● Appendixes A through E: The appendixes provide supplemental coverage of Java. As we mentioned
earlier. Appendix A considers programming style and comments. It introduces javadoc comments
and defines the tags that we use in this book. Appendix B reviews Java up to but not including classes.
However, this appendix also covers the Scanner class, enumerations, boxing and unboxing, and
the for-each loop. Appendix C discusses Java classes, Appendix D expands this topic by looking at
composition and inheritance, and Appendix E discusses files.

xii

A
ck

n
o

w
le

d
gm

en
ts Acknowledgments

Our sincere appreciation and thanks go to the following reviewers for carefully reading the previous edi-
tion and making candid comments and suggestions that greatly improved the work:

Tony Allevato—Virginia Polytechnic Institute and State University
Mary Boelk—Marquette University
Suzanne Buchele—Southwestern University
Kevin Buffardi—Virginia Polytechnic Institute and State University
Jose Cordova—University of Louisiana at Monroe
Greg Gagne—Westminster College
Victoria Hilford—University of Houston
Jim Huggins—Kettering University
Shamim Kahn—Columbus State University
Kathy Liszka—University of Akron
Eli Tilevich—Virginia Polytechnic Institute and State University
Jianhua Yang—Columbus State University
Michelle Zhu—Southern Illinois University

Special thanks go to our support team at Pearson Education Computer Science during the lengthy pro-
cess of revising this book: Executive Editor Tracy Dunkelberger, Program Manager Carole Snyder, Program
Management-Team Leader Scott Disanno, and Project Manager Bob Engelhardt have always be a great help
to us in completing our projects. Our long-time copy editor, Rebecca Pepper, ensured that the presentation is
clear, correct, and grammatical. Thank you so much!

Our gratitude for the previously mentioned people does not diminish our appreciation for the help pro-
vided by many others. Steve Armstrong produced the lecture slides for this edition and previous editions of
the book. Professor Charles Hoot of the Oklahoma City University created the lab manual, Professor Kathy
Liszka from the University of Akron created the new collection of test questions, and Jesse Grabowski pro-
vided the solutions to many of the programming projects. Thank you again to the reviewers of the previous
editions of the book:

Reviewers for the third edition:
Steven Andrianoff—St. Bonaventure University
Brent Baas—LeTourneau University
Timothy Henry—New England Institute of Technology
Ken Martin—University of North Florida
Bill Siever—Northwest Missouri State University
Lydia Sinapova—Simpson College
Lubomir Stanchev—Indiana University
Judy Walters—North Central College
Xiaohui Yuan—University of North Texas
Reviewers for the second edition:
Harold Anderson—Marist College
Razvan Andonie—Central Washington University
Tom Blough—Rensselaer Polytechnic Institute
Chris Brooks—University of San Francisco
Adrienne Decker—University at Buffalo, SUNY

xiii

A
ck

n
o

w
le

d
gm

en
tsHenry Etlinger—Rochester Institute of Technology

Derek Harter—Texas A&M University
Timothy Henry—New England Institute of Technology
Robert Holloway—University of Wisconsin, Madison
Charles Hoot—Oklahoma City University
Teresa Leyk—Texas A&M University
Robert McGlinn—Southern Illinois University, Carbondale
Edward Medvid—Marymount University
Charles Metzler—City College of San Francisco
Daniel Zeng—University of Arizona
Reviewers for the first edition:
David Boyd—Valdosta State University
Dennis Brylow—Purdue University
Michael Croswell—Industry trainer/consultant
Matthew Dickerson—Middlebury College
Robert Holloway—University of Wisconsin, Madison
John Motil—California State University, Northridge
Bina Ramamurthy—University at Buffalo, SUNY
David Surma—Valparaiso University
We continue to appreciate the many others who helped during previous editions. They include Alan

Apt, James Blanding, Lianne Dunn, Mike Giacobbe, Toni Holm, Charles Hoot, Brian Jepson, Rose Kernan,
Christianna Lee, Patrick Lindner, John Lovell, Vince O’Brien, Patty Roy, Walt Savitch, Ben Schomp, Heather
Scott, Carole Snyder, Chirag Thakkar, Camille Trentacoste, Nate Walker, and Xiaohong Zhu.

Finally, we thank our families and friends—Doug, Joanne, Tita, Bobby, Ted, Nancy, Sue, Tom, Maybeth,
Marge, and Lorraine—for giving us lives away from computers.

Thank you, everyone, for your expertise and good cheer.
Frank M. Carrano
Timothy M. Henry

This page intentionally left blank

xv

Ta
b

le
 o

f
C

o
n

te
n

tsContents
Introduction: Organizing Data	 1
Prelude: Designing Classes	 5
Encapsulation	 6
Specifying Methods	 8

Comments	 8
Preconditions and Postconditions	 9
Assertions	 10

Java Interfaces	 11
Writing an Interface	 12
Implementing an Interface	 13
An Interface as a Data Type	 15
Extending an Interface	 16
Named Constants Within an Interface	 17

Choosing Classes	 19
Identifying Classes	 20
CRC Cards	 21
The Unified Modeling Language	 21

Reusing Classes	 24

	 Chapter 1	 Bags	 31
The Bag	 32

A Bag’s Behaviors	 32
Specifying a Bag	 33

An Interface	 39
Using the ADT Bag	 41
Using an ADT Is Like Using a Vending Machine	 45
The ADT Set	 47
Java Class Library: The Interface set	 47

Java Interlude 1	 Generics	 53
Generic Data Types	 53

Generic Types Within an Interface	 54
Generic Classes	 55

	 Chapter 2	 Bag Implementations That Use Arrays	 59
Using a Fixed-Size Array to Implement the ADT Bag	 60

An Analogy	 60
A Group of Core Methods	 61
Implementing the Core Methods	 62
Making the Implementation Secure	 69
Testing the Core Methods	 71
Implementing More Methods	 73
Methods That Remove Entries	 76

Using Array Resizing to Implement the ADT Bag	 84
Resizing an Array	 84
A New Implementation of a Bag	 87

The Pros and Cons of Using an Array to Implement the ADT Bag	 90

xvi

Ta
b

le
 o

f
C

o
n

te
n

ts Java Interlude 2	 Exceptions� 95
The Basics� 96
Handling an Exception� 98

Postpone Handling: The throws Clause� 98
Handle It Now: The try-catch Blocks� 99
Multiple catch Blocks� 100

Throwing an Exception� 101

	 Chapter 3	 A Bag Implementation That Links Data� 103
Linked Data� 104

Forming a Chain by Adding to Its Beginning� 105
A Linked Implementation of the ADT Bag� 107

The Private Class Node� 107
An Outline of the Class LinkedBag� 108
Defining Some Core Methods� 109
Testing the Core Methods� 113
The Method getFrequencyOf� 114
The Method contains� 115

Removing an Item from a Linked Chain� 116
The Methods remove and clear� 117

A Class Node That Has Set and Get Methods� 121
The Pros and Cons of Using a Chain to Implement the ADT Bag� 124

	 Chapter 4	 The Efficiency of Algorithms� 129
Motivation� 130
Measuring an Algorithm’s Efficiency� 131

Counting Basic Operations� 133
Best, Worst, and Average Cases� 135

Big Oh Notation� 136
The Complexities of Program Constructs� 138

Picturing Efficiency� 140
The Efficiency of Implementations of the ADT Bag� 143

An Array-Based Implementation� 143
A Linked Implementation� 145
Comparing the Implementations� 146

	 Chapter 5	 Stacks� 153
Specifications of the ADT Stack� 154
Using a Stack to Process Algebraic Expressions� 158

A Problem Solved: Checking for Balanced Delimiters in an
  Infix Algebraic Expression� 159
A Problem Solved: Transforming an Infix Expression
  to a Postfix Expression� 164
A Problem Solved: Evaluating Postfix Expressions� 169
A Problem Solved: Evaluating Infix Expressions� 171

The Program Stack� 173
Java Class Library: The Class Stack� 174

	 Chapter 6	 Stack Implementations� 181
A Linked Implementation� 181
An Array-Based Implementation� 185

xvii

Ta
b

le
 o

f
C

o
n

te
n

tsA Vector-Based Implementation	 189
Java Class Library: The Class Vector	 190
Using a Vector to Implement the ADT Stack	 190

	 Chapter 7	 Recursion	 197
What Is Recursion?	 198
Tracing a Recursive Method	 202
Recursive Methods That Return a Value	 205
Recursively Processing an Array	 207
Recursively Processing a Linked Chain	 210
The Time Efficiency of Recursive Methods	 211

The Time Efficiency of countDown	 212
The Time Efficiency of Computing xn	 213

A Simple Solution to a Difficult Problem	 214
A Poor Solution to a Simple Problem	 219
Tail Recursion	 221
Indirect Recursion	 223
Using a Stack Instead of Recursion	 224

	Java Interlude 3	 More About Generics	 235
The Interface Comparable	 235
Generic Methods	 237
Bounded Type Parameters	 238
Wildcards	 240

Bounded Wildcards	 241

	 Chapter 8	 An Introduction to Sorting	 245
Organizing Java Methods That Sort an Array	 246
Selection Sort	 247

Iterative Selection Sort	 248
Recursive Selection Sort	 250
The Efficiency of Selection Sort	 251

Insertion Sort	 251
Iterative Insertion Sort	 253
Recursive Insertion Sort	 255
The Efficiency of Insertion Sort	 257
Insertion Sort of a Chain of Linked Nodes	 257

Shell Sort	 260
The Algorithm	 262
The Efficiency of Shell Sort	 263

Comparing the Algorithms	 263

	 Chapter 9	 Faster Sorting Methods	 271
Merge Sort	 272

Merging Arrays	 272
Recursive Merge Sort	 273
The Efficiency of Merge Sort	 275
Iterative Merge Sort	 277
Merge Sort in the Java Class Library	 277

Quick Sort	 278
The Efficiency of Quick Sort	 278
Creating the Partition	 279

xviii

Ta
b

le
 o

f
C

o
n

te
n

ts Implementing Quick Sort	 282
Quick Sort in the Java Class Library	 284

Radix Sort	 284
Pseudocode for Radix Sort	 285
The Efficiency of Radix Sort	 286

Comparing the Algorithms	 286

	Java Interlude 4	 More About Exceptions	 293
Programmer-Defined Exception Classes	 293
Inheritance and Exceptions	 297
The finally Block	 298

	 Chapter 10	 Queues, Deques, and Priority Queues	 301
The ADT Queue	 302

A Problem Solved: Simulating a Waiting Line	 306
A Problem Solved: Computing the Capital Gain in a Sale of Stock	 312
Java Class Library: The Interface Queue	 315

The ADT Deque	 316
A Problem Solved: Computing the Capital Gain in a Sale of Stock	 319
Java Class Library: The Interface Deque	 320
Java Class Library: The Class ArrayDeque	 321

The ADT Priority Queue	 321
A Problem Solved: Tracking Your Assignments	 323
Java Class Library: The Class PriorityQueue	 325

	 Chapter 11	 Queue, Deque, and Priority Queue Implementations	 331
A Linked Implementation of a Queue	 332
An Array-Based Implementation of a Queue	 336

A Circular Array	 336
A Circular Array with One Unused Location	 339

Circular Linked Implementations of a Queue	 344
A Two-Part Circular Linked Chain	 345

Java Class Library: The Class AbstractQueue	 350
A Doubly Linked Implementation of a Deque	 351
Possible Implementations of a Priority Queue	 355

	 Chapter 12	 Lists	 361
Specifications for the ADT List	 362
Using the ADT List	 369
Java Class Library: The Interface List	 373
Java Class Library: The Class ArrayList	 373

	 Chapter 13	 A List Implementation That Uses an Array	 379
Using an Array to Implement the ADT List	 380

An Analogy	 380
The Java Implementation	 382
The Efficiency of Using an Array to Implement the ADT List	 390

	 Chapter 14	 A List Implementation That Links Data	 397
Operations on a Chain of Linked Nodes	 398

Adding a Node at Various Positions	 398
Removing a Node from Various Positions	 402
The Private Method getNodeAt	 403

xix

Ta
b

le
 o

f
C

o
n

te
n

tsBeginning the Implementation	 404
The Data Fields and Constructor	 405
Adding to the End of the List	 407
Adding at a Given Position Within the List	 408
The Methods isEmpty and toArray	 409
Testing the Core Methods	 411

Continuing the Implementation	 412
A Refined Implementation	 415

The Tail Reference	 415
The Efficiency of Using a Chain to Implement the ADT List	 418
Java Class Library: The Class LinkedList	 420

	Java Interlude 5	 Iterators	 427
What Is an Iterator?	 427
The Interface Iterator	 429

The Interface Iterable	 431
Using the Interface Iterator	 431
Iterable and for-each Loops	 435

The Interface ListIterator	 436
The Interface List Revisited	 439
Using the Interface ListIterator	 440

	 Chapter 15	 Iterators for the ADT List	 443
Ways to Implement an Iterator	 444
A Separate Class Iterator	 444
An Inner Class Iterator	 447

A Linked Implementation	 448
An Array-Based Implementation	 451

Why Are Iterator Methods in Their Own Class?	 454
An Array-Based Implementation of the Interface ListIterator	 456

The Inner Class	 457

	Java Interlude 6	 Mutable and Immutable Objects	 469
Mutable Objects	 470
Immutable Objects	 472

Creating a Read-Only Class	 472
Companion Classes	 474

	 Chapter 16	 Sorted Lists	 477
Specifications for the ADT Sorted List	 478

Using the ADT Sorted List	 481
A Linked Implementation	 482

The Method add	 483
The Efficiency of the Linked Implementation	 490

An Implementation That Uses the ADT List	 490
Efficiency Issues	 493

	Java Interlude 7	 Inheritance and Polymorphism	 499
Further Aspects of Inheritance	 499

When to Use Inheritance	 499
Protected Access	 500
Abstract Classes and Methods	 501
Interfaces Versus Abstract Classes 	 503

Polymorphism	 504

xx

Ta
b

le
 o

f
C

o
n

te
n

ts 	 Chapter 17	 Inheritance and Lists	 511
Using Inheritance to Implement a Sorted List	 512
Designing a Base Class	 514

Creating an Abstract Base Class	 519
An Efficient Implementation of a Sorted List	 521

The Method add	 521

	 Chapter 18	 Searching	 527
The Problem	 528
Searching an Unsorted Array	 528

An Iterative Sequential Search of an Unsorted Array	 529
A Recursive Sequential Search of an Unsorted Array	 530
The Efficiency of a Sequential Search of an Array	 532

Searching a Sorted Array	 532
A Sequential Search of a Sorted Array	 532
A Binary Search of a Sorted Array	 533
Java Class Library: The Method binarySearch	 538
The Efficiency of a Binary Search of an Array	 538

Searching an Unsorted Chain	 539
An Iterative Sequential Search of an Unsorted Chain	 540
A Recursive Sequential Search of an Unsorted Chain	 540
The Efficiency of a Sequential Search of a Chain	 541

Searching a Sorted Chain	 541
A Sequential Search of a Sorted Chain	 541
A Binary Search of a Sorted Chain	 542

Choosing a Search Method	 542

	Java Interlude 8	 Generics Once Again	 549
More Than One Generic Type	 549

	 Chapter 19	 Dictionaries	 551
Specifications for the ADT Dictionary	 552

A Java Interface	 556
Iterators	 557

Using the ADT Dictionary	 558
A Problem Solved: A Directory of Telephone Numbers	 559
A Problem Solved: The Frequency of Words	 564
A Problem Solved: A Concordance of Words	 567

Java Class Library: The Interface Map	 570

	 Chapter 20	 Dictionary Implementations	 575
Array-Based Implementations	 576

An Unsorted Array-Based Dictionary	 576
A Sorted Array-Based Dictionary	 581

Linked Implementations	 586
An Unsorted Linked Dictionary	 587
A Sorted Linked Dictionary	 588

	 Chapter 21	 Introducing Hashing	 595
What Is Hashing?	 596
Hash Functions	 599

Computing Hash Codes	 599
Compressing a Hash Code into an Index for the Hash Table	 602

xxi

Ta
b

le
 o

f
C

o
n

te
n

tsResolving Collisions	 603
Open Addressing with Linear Probing	 603
Open Addressing with Quadratic Probing	 608
Open Addressing with Double Hashing	 609
A Potential Problem with Open Addressing	 611
Separate Chaining	 612

	 Chapter 22	 Hashing as a Dictionary Implementation	 619
The Efficiency of Hashing	 620

The Load Factor	 620
The Cost of Open Addressing	 621
The Cost of Separate Chaining	 623

Rehashing	 624
Comparing Schemes for Collision Resolution	 625
A Dictionary Implementation That Uses Hashing	 626

Entries in the Hash Table	 626
Data Fields and Constructors	 627
The Methods getValue, remove, and add	 629
Iterators	 634

Java Class Library: The Class HashMap	 635
Jave Class Library: The Class HashSet	 636

	 Chapter 23	 Trees	 639
Tree Concepts	 640

Hierarchical Organizations	 640
Tree Terminology	 642

Traversals of a Tree	 646
Traversals of a Binary Tree	 647
Traversals of a General Tree	 649

Java Interfaces for Trees	 650
Interfaces for All Trees	 650
An Interface for Binary Trees	 651

Examples of Binary Trees	 652
Expression Trees	 653
Decision Trees	 654
Binary Search Trees	 658
Heaps	 660

Examples of General Trees	 663
Parse Trees	 663
Game Trees	 663

	 Chapter 24	 Tree Implementations	 673
The Nodes in a Binary Tree	 674

A Class of Binary Nodes	 675
An Implementation of the ADT Binary Tree	 676

Creating a Basic Binary Tree	 677
The Method privateSetTree	 678
Accessor and Mutator Methods	 681
Computing the Height and Counting Nodes	 681
Traversals	 682

An Implementation of an Expression Tree	 687

xxii

Ta
b

le
 o

f
C

o
n

te
n

ts General Trees	 688
A Node for a General Tree	 688

Using a Binary Tree to Represent a General Tree	 689

	Java Interlude 9	 Cloning	 697
Cloneable Objects	 697

Cloning an Array	 703
Cloning a Chain	 706
A Sorted List of Clones	 709
Cloning a Binary Node	 711

	 Chapter 25	 A Binary Search Tree Implementation	 713
Getting Started	 714

An Interface for the Binary Search Tree	 715
Duplicate Entries	 717
Beginning the Class Definition	 718

Searching and Retrieving	 719
Traversing	 720
Adding an Entry	 721

A Recursive Implementation	 722
An Iterative Implementation	 725

Removing an Entry	 726
Removing an Entry Whose Node Is a Leaf	 727
Removing an Entry Whose Node Has One Child	 727
Removing an Entry Whose Node Has Two Children	 728
Removing an Entry in the Root	 731
A Recursive Implementation	 732
An Iterative Implementation	 735

The Efficiency of Operations	 739
The Importance of Balance	 740
The Order in Which Nodes Are Added	 740

An Implementation of the ADT Dictionary	 740

	 Chapter 26	 A Heap Implementation	 753
Reprise: The ADT Heap	 754
Using an Array to Represent a Heap	 754
Adding an Entry	 757
Removing the Root	 760
Creating a Heap	 763
Heap Sort	 766

	 Chapter 27	 Balanced Search Trees	 775
AVL Trees	 776

Single Rotations	 776
Double Rotations	 779
Implementation Details	 783

2-3 Trees	 787
Searching a 2-3 Tree	 788
Adding Entries to a 2-3 Tree	 789
Splitting Nodes During Addition	 791

2-4 Trees	 792
Adding Entries to a 2-4 Tree	 793
Comparing AVL, 2-3, and 2-4 Trees	 795

xxiii

Ta
b

le
 o

f
C

o
n

te
n

tsRed-Black Trees� 796
Properties of a Red-Black Tree	 797
Adding Entries to a Red-Black Tree	 798
Java Class Library: The Class TreeMap	 804

B-Trees	 804

	 Chapter 28	 Graphs	 811
Some Examples and Terminology	 812

Road Maps	 812
Airline Routes	 815
Mazes	 815
Course Prerequisites	 816
Trees	 816

Traversals	 817
Breadth-First Traversal	 818
Depth-First Traversal	 819

Topological Order	 821
Paths	 824

Finding a Path	 824
The Shortest Path in an Unweighted Graph	 824
The Shortest Path in a Weighted Graph	 827

Java Interfaces for the ADT Graph	 830

	 Chapter 29	 Graph Implementations	 841
An Overview of Two Implementations	 842

The Adjacency Matrix	 842
The Adjacency List	 843

Vertices and Edges	 844
Specifying the Class Vertex	 845
The Inner Class Edge	 847
Implementing the Class Vertex	 848

An Implementation of the ADT Graph	 851
Basic Operations	 851
Graph Algorithms	 854

	 Appendix A	 Documentation and Programming Style	 861
Naming Variables and Classes	 861
Indenting	 862
Comments	 862

Single-Line Comments	 863
Comment Blocks	 863
When to Write Comments	 863
Java Documentation Comments	 863

	 Appendix B	 Java Basics (online)	
Introduction	

Applications and Applets	
Objects and Classes	
A First Java Application Program	

Elements of Java	
Identifiers	
Reserved Words	
Variables	

xxiv

Ta
b

le
 o

f
C

o
n

te
n

ts Primitive Types	
Constants	
Assignment Statements	
Assignment Compatibilities	
Type Casting	
Arithmetic Operators and Expressions	
Parentheses and Precedence Rules	
Increment and Decrement Operators	
Special Assignment Operators	
Named Constants	
The Class Math	

Simple Input and Output Using the Keyboard and Screen	
Screen Output	
Keyboard Input Using the Class Scanner	

The if-else Statement	
Boolean Expressions	
Nested Statements	
Multiway if-else Statements	
The Conditional Operator (Optional)	

The switch Statement	
Enumerations	
Scope	
Loops	

The while Statement	
The for Statement	
The do-while Statement	
Additional Loop Information	

The Class String	
Characters Within Strings	
Concatenation of Strings	
String Methods	

The Class StringBuilder	
Using Scanner to Extract Pieces of a String	
Arrays	

Array Parameters and Returned Values	
Initializing Arrays	
Array Index Out of Bounds	
Use of = and == with Arrays	
Arrays and the For-Each Loop	
Multidimensional Arrays	

Wrapper Classes	

	 Appendix C	 Java Classes (online)	
Objects and Classes	
Using the Methods in a Java Class	

References and Aliases	
Defining a Java Class	

Method Definitions	
Arguments and Parameters	
Passing Arguments	
A Definition of the Class Name	

xxv

Constructors	
The Method toString	
Methods That Call Other Methods	
Methods That Return an Instance of Their Class	
Static Fields and Methods	

Overloading Methods	
Enumeration as a Class	
Packages	

The Java Class Library	

	 Appendix D	 Creating Classes from Other Classes	 869
Composition	 870

Adapters	 872
Inheritance	 873

Invoking Constructors from Within Constructors	 876
Private Fields and Methods of the Superclass	 877
Overriding and Overloading Methods	 878
Multiple Inheritance	 883

Type Compatibility and Superclasses	 883
The Class Object	 884

	 Appendix E	 File Input and Output (online)	
Preliminaries	

Why Files?	
Streams	
The Kinds of Files	
File Names	

Text Files	
Creating a Text File	
Reading a Text File	
Changing Existing Data in a Text File	
Defining a Method to Open a Stream	

Binary Files	
Creating a Binary File of Primitive Data	
Reading a Binary File of Primitive Data	
Strings in a Binary File	
Object Serialization	

		 Glossary (online)	
		 Index	 888

Ta
b

le
 o

f
C

o
n

te
n

ts

xxvi

V
id

eo
N

o
te

s VideoNotes Directory

This table lists the VideoNotes that are available online. The page numbers indicate
where in the book each VideoNote has relevance.

	 Chapter 1 Bags   31
Designing an ADT   33
Designing a test for an ADT   41

Java Interlude 1 Generics   53
Generics   54

	 Chapter 2 Bag Implementations That Use Arrays   59
An array-based bag   61
A resizable bag   87

Java Interlude 2 Exceptions   95
Exceptions   96

	 Chapter 3 A Bag Implementation That Links Data 103
Linked data 104
Beginning the class LinkedBag 109
Completing the class LinkedBag 114

	 Chapter 4 The Efficiency of Algorithms 129
Measuring efficiency 131
Comparing ADT bag implementations 143

	 Chapter 5 Stacks 153
The ADT stack 154
Using the ADT stack 169

	 Chapter 6 Stack Implementations 181
The class LinkedStack 182
The class ArrayStack 185

	 Chapter 7 Recursion 197
Introducing recursion 198
Using recursion to solve problems 207

	Java Interlude 3 More About Generics 235
Generic classes and methods 237

	 Chapter 8 An Introduction to Sorting 245
Selection sort 247
Insertion sort 252

	 Chapter 9 Faster Sorting Methods 271
Merge sort 272
Quick sort 278

Java Interlude 4 More About Exceptions 293
Creating your own exceptions 293

	 Chapter 10 Queues, Deques, and Priority Queues 301
The ADT queue 302
The ADTs deque and priority queue 322

VideoNote

xxvii

V
id

eo
N

o
te

s	 Chapter 11 Queue, Deque, and Priority Queue Implementations 331
The class LinkedQueue 332
The class ArrayQueue 339
Other queue implementations 344

	 Chapter 12 Lists 361
The ADT list 362
Using the ADT list 369

	 Chapter 13 A List Implementation That Uses Array 379
The class AList 382
Completing the class AList 387

	 Chapter 14 A List Implementation That Links Data 397
The class LList 406
Completing the class LList 412

	Java Interlude 5 Iterators 427
Iterators and their use 428

	 Chapter 15 Iterators for the ADT List 443
Alternative iterator implementations 447

Java Interlude 6 Mutable and Immutable Objects 469
Mutable and immutable objects 470

	 Chapter 16 Sorted Lists 477
The class LinkedSortedList 482
An array-based sorted list 490

Java Interlude 7 Inheritance and Polymorphism 499
Inheritance 500

	 Chapter 17 Inheritance and Lists 511
Inheritance and ADT implementations 512
Creating a base class 519

	 Chapter 18 Searching 527
Searching an array 529
Searching a linked chain 540

Java Interlude 8 Generics Once Again 549
Multitype generics 549

	 Chapter 19 Dictionaries 551
The ADT dictionary 552
Using the ADT dictionary 558

	 Chapter 20 Dictionary Implementations 575
Array-based dictionaries 576
Linked-chain dictionaries 586

	 Chapter 21 Introducing Hashing 595
Hashing 596
Resolving collisions 603

	 Chapter 22 Hashing as a Dictionary Implementation 619
Hashing efficiency 620
Implementing a dictionary 626

xxviii

	 Chapter 23 Trees 639
The ADT Tree 646
Using a binary tree 653

	 Chapter 24 Tree Implementations 673
Creating a binary tree 677
Binary tree operations 681

Java Interlude 9 Cloning 697
Cloneable objects 697

	 Chapter 25 A Binary Search Tree Implementation 713
Creating a binary search tree 718
Binary search tree additions and removals 721

	 Chapter 26 A Heap Implementation 753
Implementing the ADT heap 754
The heap sort 766

	 Chapter 27 Balanced Search Trees 775
AVL trees 776
2-3 trees 787
2-4 and red-black trees 793

	 Chapter 28 Graphs 811
Graph concepts and terminology 812
Graph operations 817

	 Chapter 29 Graph Implementations 841
The adjacency matrix 842
Implementing graph operations 851

V
id

eo
N

o
te

s

  Chapter Prerequisites
Each chapter and appendix assumes that the reader has studied certain previous material.
This list indicates those prerequisites. Numbers represent chapter numbers, letters refer-
ence appendixes, and “JI” precedes each interlude number. You can use this information
to plan a path through the book.

Prerequisites
	 Prelude Designing Classes A, B, C, D
	 Chapter 1 Bags Prelude, D
Java Interlude 1 Generics Prelude
	 Chapter 2 Bag Implementations That Use Arrays Prelude, 1
Java Interlude 2 Exceptions B, C, D
	 Chapter 3 A Bag Implementation That Links Data 1, 2, JI2
	 Chapter 4 The Efficiency of Algorithms 2, 3, C
	 Chapter 5 Stacks Prelude, 1, JI2
	 Chapter 6 Stack Implementations 2, 3, 4, 5
	 Chapter 7 Recursion 2, 3, 4, 5, C
Java Interlude 3 More About Generics JI1
	 Chapter 8 An Introduction to Sorting 3, 4, 7, JI3
	 Chapter 9 Faster Sorting Methods 4, 7, 8, JI3
Java Interlude 4 More About Exception D, JI2
	 Chapter 10 Queues, Deques, and Priority Queues Prelude, 5, 8
	 Chapter 11 Queue, Deque, and Priority Queue Implementations 2, 3, 6, 10
	 Chapter 12 Lists Prelude, 6, C, JI2, JI3
	 Chapter 13 List Implementations That Use Arrays Prelude, 2, 4, 12
	 Chapter 14 A List Implementation That Links Data 3, 11, 12, 13
Java Interlude 5 Iterators 12, JI2
	 Chapter 15 Iterators 13, 14, JI5
Java Interlude 6 Mutable and Immutable Objects 12, D
	 Chapter 16 Sorted Lists 4, 7, 12, 14
Java Interlude 7 Inheritance and Polymorphism Prelude, 6, D
	 Chapter 17 Inheritance and Lists 12, 13, 14, 16, D, JI7
	 Chapter 18 Searching 4, 7, 12, 13, 14, 16
Java Interlude 8 Generics Once Again C, JI3
	 Chapter 19 Dictionaries 12, 15, 18, JI5, JI8
	 Chapter 20 Dictionary Implementations 3, 4, 12, 13, 14, 18, 19, JI5
	 Chapter 21 Introducing Hashing 19, 20

Prerequisites
	 Chapter 22 Hashing as a Dictionary Implementation 4, 13, 14, 19, 20, 21, JI5
	 Chapter 23 Trees 5, 7, 14, 18, JI5
	 Chapter 24 Tree Implementations 5, 10, 14, 23, D, JI2
Java Interlude 9 Cloning 16, 24, C, D, JI3, JI6
	 Chapter 25 A Binary Search Tree Implementation 7, 19, 23, 24, D
	 Chapter 26 A Heap Implementation 2, 13, 23
	 Chapter 27 Balanced Search Trees 23, 24, 25
	 Chapter 28 Graphs 5, 10, 23
	 Chapter 29 Graph Implementations 5, 10, 12, 15, 19, 23, 28, JI5
	 Appendix A Documentation and Programming Style Some knowledge of Java
	 Appendix B Java Essentials Programming knowledge
	 Appendix C Java Classes B
	 Appendix D Creating Classes from Other Classes C
	 Appendix E File Input and Output Prelude, B, JI2

Look around and you will see ways that people organize things. When you stopped at the
store this morning, you went to the back of a line to wait for the cashier. The line organized
people chronologically. The first person in the line was the first to be served and to leave the
line. Eventually, you reached the front of the line and left the store with a bag containing your
purchases. The items in the bag were in no particular order, and some of them were the same.

Do you see a stack of books or a pile of papers on your desk? It’s easy to look at or
remove the top item of the stack or to add a new item to the top of the stack. The items in a
stack also are organized chronologically, with the item added most recently on top and the
item added first on the bottom.

At your desk, you see your to-do list. Each entry in the list has a position that might or
might not be important to you. You may have written them either as you thought of them, in
their order of importance, or in alphabetical order. You decide the order; the list simply pro-
vides places for your entries.

Your dictionary is an alphabetical list of words and their definitions. You search for a
word and get its definition. If your dictionary is printed, the alphabetical organization helps
you to locate a word quickly. If your dictionary is computerized, its alphabetical organization
is hidden, but it still speeds the search.

Speaking of your computer, you have organized your files into folders, or directories.
Each folder contains several other folders or files. This type of organization is hierarchical. If
you drew a picture of it, you would get something like a family tree or a chart of a company’s
internal departments. These data organizations are similar and are called trees.

Finally, notice the road map that you are using to plan your weekend trip. The diagram
of roads and towns shows you how to get from one place to another. Often, several ways
are possible. One way might be shorter, another faster. The map has an organization known
as a graph.

Organizing Data

Introduction

2   INTRODUCTiON   Organizing Data

Computer programs also need to organize their data. They do so in ways that parallel the
examples we just cited. That is, programs can use a stack, a list, a dictionary, and so on. These
ways of organizing data are represented by abstract data types. An abstract data type, or ADT,
is a specification that describes a data set and the operations on that data. Each ADT specifies
what data is stored and what the operations on the data do. Since an ADT does not indicate how
to store the data or how to implement the operations, we can talk about ADTs independently of
any programming language. In contrast, a data structure is an implementation of an ADT within
a programming language.

A collection is a general term for an ADT that contains a group of objects. Some collections
allow duplicate items, some do not. Some collections arrange their contents in a certain order,
while others do not.

We might create an ADT bag consisting of an unordered collection that allows duplicates. It
is like a grocery bag, a lunch bag, or a bag of potato chips. Suppose you remove one chip from a
bag of chips. You don’t know when the chip was placed into the bag. You don’t know whether the
bag contains another chip shaped exactly like the one you just removed. But you don’t really care.
If you did, you wouldn’t store your chips in a bag!

A bag does not order its contents, but sometimes you do want to order things. ADTs can order
their items in a variety of ways. The ADT list, for example, simply numbers its items. A list, then,
has a first item, a second item, and so on. Although you can add an item to the end of a list, you can
also insert an item at the beginning of the list or between existing items. Doing so renumbers the
items after the new item. Additionally, you can remove an item at a particular position within a list.
Thus, the position of an item in the list does not necessarily indicate when it was added. Notice that
the list does not decide where an item is placed; you make this decision.

Examples of everday
data organizations

Organizing Data   3

In contrast, the ADTs stack and queue order their items chronologically. When you remove
an item from a stack, you remove the one that was added most recently. When you remove an item
from a queue, you remove the one that was added the earliest. Thus, a stack is like a pile of books.
You can remove the top book or add another book to the top of the pile. A queue is like a line of
people. People leave a line from its front and join it at its end.

Some ADTs maintain their entries in sorted order, if the items can be compared. For instance,
strings can be organized in alphabetical order. When you add an item to the ADT sorted list, for
example, the ADT determines where to place the item in the list. You do not indicate a position for
the item, as you would with the ADT list.

The ADT dictionary contains pairs of items, much as a language dictionary contains a word
and its definition. In this example, the word serves as a key that is used to locate the entries. Some
dictionaries sort their entries and some do not.

The ADT tree organizes its entries according to some hierarchy. For example, in a family tree,
people are associated with their children and their parents. The ADT binary search tree has a
combined hierarchical and sorted organization that makes locating a particular entry easier.

The ADT graph is a generalization of the ADT tree that focuses on the relationship among its
entries instead of any hierarchical organization. For example, a road map is a graph that shows the
existing roads and distances between towns.

This book shows you how to use and implement these data organizations. Throughout the
book, we’ve assumed that you already know Java. If you need a refresher, you will find the
appendixes helpful. Appendix A gives an overview of writing comments suitable for javadoc.
Appendix B reviews the basic statements in Java. Appendix C discusses the fundamental construc-
tion of classes and methods, and Appendix D covers the essentials of composition and inheritance.
Finally, Appendix E presents reading and writing external files. Appendixes B, C, and E are on the
book’s website (see page ix of the Preface). You can download them and refer to the material as
needed. Special sections throughout the book, called Java Interludes, focus on relevant aspects of
Java that might be new to you, including how to handle exceptions. The Prelude, which follows,
discusses how to design classes, specify methods, and write Java interfaces. Using interfaces and
writing comments to specify methods are essential to our presentation of ADTs.

This page intentionally left blank

Designing Classes

Contents
Encapsulation
Specifying Methods

Comments
Preconditions and Postconditions
Assertions

	Java Interfaces
Writing an Interface
Implementing an Interface
An Interface as a Data Type
Extending an Interface
Named Constants Within an Interface

	Choosing Classes
Identifying Classes
CRC Cards
The Unified Modeling Language

	Reusing Classes

Prerequisites
Appendix	 A	 Documentation and Programming Style
Appendix	 B	 Java Basics (Online)
Appendix	 C	 Java Classes (Online)
Appendix	 D	 Creating Classes from Other Classes

Object-oriented programming embodies three design concepts: encapsulation, inheritance,
and polymorphism. If you are not familiar with inheritance and polymorphism, please review
Appendixes B, C, and D. Here we will discuss encapsulation as a way to hide the details of

Prelude

6   PRELUDE   Designing Classes

an implementation during the design of a class. We emphasize the importance both of specifying
how a method should behave before you implement it and of expressing your specifications as
comments in your program.

We introduce Java interfaces as a way to separate the declarations of a class’s behavior from
its implementation. Finally, we present, at an elementary level, some techniques for identifying
the classes necessary for a particular solution.

Encapsulation
	P.1	 What is the most useful description of an automobile, if you want to learn to drive one? It clearly is

not a description of how its engine goes through a cycle of taking in air and gasoline, igniting the
gasoline/air mixture, and expelling exhaust. Such details are unnecessary when you want to learn
to drive. In fact, such details can get in your way. If you want to learn to drive an automobile, the
most useful description of an automobile has such features as the following:

●● If you press your foot on the accelerator pedal, the automobile will move faster.
●● If you press your foot on the brake pedal, the automobile will slow down and eventually stop.
●● If you turn the steering wheel to the right, the automobile will turn to the right.
●● If you turn the steering wheel to the left, the automobile will turn to the left.

Just as you need not tell somebody who wants to drive a car how the engine works, you
need not tell somebody who uses a piece of software all the fine details of its Java implementa-
tion. Likewise, suppose that you create a software component for another programmer to use in a
program. You should describe the component in a way that tells the other programmer how to use
it but that spares the programmer all the details of how you wrote the software.

	P.2	 Encapsulation is one of the design principles of object-oriented programming. The word “encap
sulation” sounds as though it means putting things into a capsule, and that image is indeed
correct. Encapsulation hides the fine detail of what is inside the “capsule.” For this reason,
encapsulation is often called information hiding. But not everything should be hidden. In
an automobile, certain things are visible—like the pedals and steering wheel—and others are
hidden under the hood. In other words, the automobile is encapsulated so that the details are
hidden, and only the controls needed to drive the automobile are visible, as Figure P-1 shows.
Similarly, you should encapsulate your Java code so that details are hidden and only the neces-
sary controls are visible.

Encapsulation encloses data and methods within a class and hides the implementation details
that are not necessary for using the class. If a class is well designed, its use does not require an
understanding of its implementation. A programmer can use the class’s methods without know-
ing the details of how they are coded. The programmer must know only how to provide a method
with appropriate arguments, leaving the method to perform the right action. Stated simply, the
programmer need not worry about the internal details of the class definition. The programmer
who uses encapsulated software to write more software has a simpler task. As a result, software is
produced more quickly and with fewer errors.

�Note:  Encapsulation is a design principle of object-oriented programming that encloses data
and methods within a class, thereby hiding the details of a class’s implementation. A program-
mer receives only enough information to be able to use the class. A well-designed class can be
used as though the body of every method was hidden from view.

Encapsulation   7

	P.3	 Abstraction is a process that asks you to focus on what instead of how. When you design a class, you
practice data abstraction. You focus on what you want to do with or to the data without worry-
ing about how you will accomplish these tasks and how you will represent the data. Abstraction
asks you to focus on what data and operations are important. When you abstract something, you
identify the central ideas. For example, an abstract of a book is a brief description of the book, as
opposed to the entire book.

When designing a class, you should not think about any method’s implementation. That is,
you should not worry about how the class’s methods will accomplish their goals. This separation of
specification from implementation allows you to concentrate on fewer details, thereby making your
task easier and less error-prone. Detailed, well-planned specifications facilitate an implementation
that is more likely to be successful.

Note:  The process of abstraction asks you to focus on what instead of how.

FIGURE P-1	 �An automobile’s controls are visible to the driver, but its inner
workings are hidden

	P.4	 When done correctly, encapsulation divides a class definition into two parts, which we will call the
client interface and the implementation. The client interface describes everything a programmer
needs to know to use the class. It consists of the headers for the public methods of the class, the
comments that tell a programmer how to use these public methods, and any publicly defined con-
stants of the class. The client interface part of the class definition should be all you need to know
to use the class in your program.

The implementation consists of all data fields and the definitions of all methods, including those
that are public, private, and protected. Although you need the implementation to run a client (a program
that uses the class), you should not need to know anything about the implementation to write the client.
Figure P-2 illustrates an encapsulated implementation of a class and the client interface. Although the
implementation is hidden from the client, the interface is visible and provides a well-regulated means
for the client to communicate with the implementation.

8   PRELUDE   Designing Classes

FIGURE P-2	 �An interface provides well-regulated communication between
a hidden implementation and a client

The client interface and implementation are not separated in the definition of a Java class.
They are mixed together. You can, however, create a separate Java interface as a companion to
your class. A later section of this prelude describes how to write such an interface, and we will
write several of them in this book.

Question 1 How does a client interface differ from a class implementation?

Question 2 Think of an example, other than an automobile, that illustrates encapsulation.
What part of your example corresponds to a client interface and what part to an implementation?

Specifying Methods
Separating the purpose of a class and its methods from their implementations is vital to a
successful software project. You should specify what each class and method does without concern
for its implementation. Writing descriptions enables you to capture your ideas initially and to
develop them so that they are clear enough to implement. Your written descriptions should reach
the point where they are useful as comments in your program. You need to go beyond a view that
sees comments as something you add after you write the program to satisfy an instructor or boss.

	Comments
Let’s focus on comments that you write for a class’s methods. Although organizations tend to have
their own style for comments, the developers of Java have specified a commenting style that you
should follow. If you include comments written in this style in your program, you can run a util-
ity program called javadoc to produce documents that describe your classes. This documentation
tells people what they need to know to use your class but omits all the implementation details,
including the bodies of all method definitions.

The program javadoc extracts the header for your class, the headers for all public methods,
and comments that are written in a certain form. Each such comment must appear immediately
before a public class definition or the header of a public method and must begin with /** and end
with */. Certain tags that begin with the symbol @ appear within the comments to identify various
aspects of the method. For example, you use @param to identify a parameter, @return to identify
a return value, and @throws to indicate an exception that the method throws. You will see some
examples of these tags within the comments in this prelude. Appendix A provides the details for
writing comments acceptable to javadoc.

Specifying Methods   9

Rather than talk further about the rules for javadoc here, we want to discuss some important
aspects of specifying a method. First, you need to write a concise statement of the method’s pur-
pose or task. Beginning this statement with a verb will help you to avoid many extra words that
you really do not need.

In thinking about a method’s purpose, you should consider its input parameters, if any, and
describe them. You also need to describe the method’s results. Does it return a value, does it cause
some action, or does it affect the state of an argument? In writing such descriptions, you should
keep in mind the following ideas.

	Preconditions and Postconditions
	P.5	 A precondition is a statement of the conditions that must be true before a method begins execution.

The method should not be used, and cannot be expected to perform correctly, unless the precondi-
tion is satisfied. A precondition can be related to the description of a method’s parameters. For
example, a method that computes the square root of x can have x ≥ 0 as a precondition.

A postcondition is a statement of what is true after a method completes its execution, assum-
ing that the precondition was met. For a valued method, the postcondition will describe the value
returned by the method. For a void method, the postcondition will describe actions taken and any
changes to the calling object. In general, the postcondition describes all the effects produced by a
method invocation.

Thinking in terms of a postcondition can help you to clarify a method’s purpose. Notice that
going from precondition to postcondition leaves out the how—that is, we separate the method’s
specification from its implementation.

�Programming Tip:  A method that cannot satisfy its postcondition, even though its
precondition is met, can throw an exception. (See Java Interludes 2 and 4 for a discussion of
exceptions.)

	P.6	 Responsibility. A precondition implies responsibility for guaranteeing that certain conditions are
met. If the client is responsible for meeting the conditions before calling the method, the method
need not check the conditions. On the other hand, if the method is responsible for enforcing the
conditions, the client does not check them. A clear statement of who must check a given set of
conditions increases the probability that someone will do so and avoids duplication of effort.

For example, you could specify the square root method that we mentioned in the previous
segment by writing the following comments before its header:

/** Computes the square root of a number.
 @param x A real number >= 0.
 @return The square root of x.
*/

In this case, the method assumes that the client will provide a nonnegative number as an argument.
A safer technique is to make the method assume responsibility for checking the argument. In

that case, its comments could read as follows:
/** Computes the square root of a number.
 @param x A real number.
 @return The square root of x if x >= 0.
 @throws ArithmeticException if x < 0.
*/

Although we’ve integrated the precondition and postcondition into the previous comments, we
could instead identify them separately.

